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Chapter 1

Introduction

1.1 Vocabulary / Terms used

• Mention – As used in this Bachelor’s thesis, a mention is a Twitter
user’s username preceded by “@” used inside a Tweet. (@example)

• Hashtag - A word or phrase preceded by a hash sign (“#”). Used
inside messages in many social networks to identify a specific topic.

• POS – Part of speech – a category to which a word belongs, usually
divided on the basis of their meaning, form or syntactic function, such
as (in English) noun, pronoun, verb, adjective etc.

1.2 Scope of the topic and hypotheses

In this thesis, I attempted to classify tweets written in English by the mother
tongue of their author. The geographical location of the tweet was used as a
proxy of the mother tongue. To test how much the two correlate, two of the
target languages chosen, Spanish and Portuguese (Mexico and Brazil) are
from the same language family (even though the countries themselves are
geographically distant). Classification was attempted in two ways: firstly,
based on punctuation, parts of speech, word count, and similar features not
containing the actual words used, and secondly, using the words. It was
hypothesized that the first classification attempt would be less precise than
the second one, due to the lack of language- and country- specific word cues;
that nevertheless the first set of features would be enough to offer at least
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2 CHAPTER 1. INTRODUCTION

some success in the classification, and, if the geographical location is a good
indicator of the mother tongue of the author, Brazil and Portugal would be
the highest in misclassification (and possibly UK and India).

1.3 Background

This topic interested me because I noticed that the way people from a dif-
ferent linguistic background use a foreign language is different, and this
difference goes deeper than accent or phonetics. A person’s culture shapes
the way they see the world (for example, perceptions of time [1]), and some
argue that even the native language of a person does, insofar as the two can
be separated, even though the latter idea (linguistic determinism) is much
more controversial. (An often-quoted example of this is how native Spanish
speakers were more likely to describe a bridge as “big”, “dangerous”, “long”,
“strong”, “sturdy”, “towering” and German speakers as “beautiful”, “ele-
gant”, “peaceful” and “fragile”. A bridge’s grammatical gender is masculine
in Spanish and feminine in German[2]).

Even if languages don’t shape how we see the world, different languages use
different paradigms to describe it. For example, in English the difference
between “cup” and “glass” is mainly based on material, while in Russian
shape plays a bigger role. Another one is how in German a dog “beißt”
and a fly “sticht”, and in Russian one single verb (“kusat”) describes both1.
If one learns a foreign language that divides the world into categories in
different ways than their mother tongue, the lack of 1-to-1 correspondence
between concepts might create errors when speaking the foreign language.

I was always interested in the way different people use language, and people
of different linguistic backgrounds using similar words and making similar
errors was one of the things I kept noticing. In the case of Germany and
the English language, examples range from both obviously derived from
German (“plaything” (=Spielzeug), “we meet us at”, overuse of punctuation)
to subtler ones (in my experiences German people are much more likely to
call “dinner” a noon meal as opposed to an evening one, as would have been
natural for me). This bachelor’s thesis is one way to explore these differences
using machine learning and a user-generated dataset.

1Mother Tongues, available online at http://slavenorth.com/columns/sanskrit.htm, is
a fascinating essay exploring this kind of connections in Sanskrit.

http://slavenorth.com/columns/sanskrit.htm
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1.4 Native language identification

Native-language identification (NLI, NLID), also known as First language
identification, is the task of determining an author’s native language (L1)
based only on their writings in a second language (L2). This is usually
framed as a supervised classification task where the set of L1 is known.
It works under the assumption that an author’s linguistic background will
dispose them towards particular language production patterns in their L2.
[3]

Related fields and topics include cross-linguistic interference (CLI, also “lan-
guage transfer”), that describes the effects of one’s mother tongue on the
acquisition of other languages, and is part of Second language acquisition
(itself part of linguistics).

NLI is a relatively recent but rapidly growing area of research, and has many
applications. The identification of typical usage patterns of L1 speakers can
influence the way foreign languages are taught, and allow to create teaching
resources tailored to the native language of the learners. Another practical
area where NLI is applied is forensic linguistics and authorship identification
(for example, in case of a ransom note and no known suspects, clues about
the writer’s linguistic background might be valuable).

1.5 Related work

The NLI shared task [4] is a NLI competition and the source of most papers
[3] on the topic. The state of the art paper [5] uses stacked generalization
and multiple features, and uses the TOEFL11 corpus[6] as does most other
research on NLI. The report on the TOEFL11 corpus contains a description
of the other existing NLI corpora.

“Native Language Identification with User Generated Content” [7] is a very
relevant paper focusing on much longer Reddit source texts and uses some
social-network specific features, such as subreddits.

On the day before printing I found “Predicting Foreign Language Usage from
English-Only Social Media Posts” [8], which uses Twitter data, but does not
call itself NLI, more correctly stating that it predicts the other languages
spoken by the person. (This thesis, strictly speaking, predicts the country
and not the L1.) The criteria is if the person tweets in other languages
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except English, and the classification is done on English tweets. Since NLI
is not mentioned it wasn’t found during my initial literature review, and the
results are neither compared to nor used nor mentioned anywhere in this
thesis due to time constraints.



Chapter 2

Methods

2.1 Classification

Classification, in machine learning and statistics, is the process of identifying
to which category a new observation belongs[9]. For example, given a dataset
of petal length, number of petals etc, attempt to classify which kind of plant
it is. Or, in the case of text, classifying incoming mail as questions, invoices,
spam, etc. For this a number of algorithms exist, some of them described
below.

2.1.1 Random Forest

Random forests are an ensemble learning method for classification, regres-
sion and other tasks. It is a classifier building a forest of decision trees, each
with a different subset of features. This improves the accuracy in the case
of many input variables[10]. Each tree “votes” for a class, and the class
with the most “votes” is chosen. Intuitively each tree is a series of yes/no
questions.

Lastly, this is relatively fast algorithm (on my datasets too) and it does not
suffer from overfitting.

5



6 CHAPTER 2. METHODS

2.1.2 SVM

Support vector machines (SVMs) are a set of supervised learning methods
used for classification, regression and outlier detection.

The advantages are [11]:

• Effective in high-dimensional areas (such as POS-ngrams used here)
• Still works when the number of dimensions is more than the number

of samples (in my balanced dataset three were 49876 tweets and, for
example, 156353 POS 1-4 n-gram features)

• Uses only a subset of features (support vectors) in the decision function
• Versatile

It works by finding the boundary between different classes in such a way as
to maximize the distance between the boundary and the classes.

In the case of multi-class classification SVCs implemented in sklearn use
one-against-one approach.

Among the parameters, one of the important ones is 𝐶, the regularization
parameter. It basically sets how sensitive should the classifier be to outliers:
a high C means a smaller margin is chosen if the results of the classification
are better. If the C is low, it will choose a hyperplane that maximizes the
margin, even if it means more points are misclassified. Usually, for noisy
datasets a lower C works better.

Fig. 2.1 in a demonstration of the above, taken from [12]. While the red line
minimizes classification errors, it will not generalize. The green boundary
is a much better one, it maximizes the margin between it and the classes it
separates, and it will probably deal much better with unseen data. But to
set it some tolerance to misclassified semi-outlier elements is needed.

2.1.3 Stochastic Linear Descent

SGD, or stochastic gradient descent, is an optimization method. SVM or
Logistic regression can be thought as classification algorithms that define a
loss function, and SGD is a method that optimizes/minimizes it.

SGD is implemented in scikit-learn and is quite popular in for large-scale
sparse ML problems often encountered in text classification and natural
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Figure 2.1: Demonstration of C and decision boundaries in a SVM [12]

language processing [13]. It’s very efficient, but requires careful tuning of
hyperparameters.

In this thesis, two loss functions are used: loss and hinge. The first one
implements logistic regression, the second one a soft-margin SVM. A soft-
margin allows SVMs to make more mistakes in classification to keep the
margin as wide as possible, this is very helpful for noisy and/or linearly
inseparable data.

SGDClassifier also supports multi-class classification, in a one-versus-all
scheme.

2.1.4 Neural networks

A neural network is a model based on the structure of biological neural
networks. It usually consists of an input layer, zero or more hidden layers,
and one output layer. Each layer is composed of neurons. A neuron has
an activation function, and it processes the inputs from the previous layer
and transmits them to the next. The connections between the neurons
have a weight. The inputs to a neuron are multiplied by the weight of the
connection, summed, and then passed through the activation functions that
controls which values will the neuron return.

A 5-layer feedforward network was used in this thesis, composed of dense
layers (100, 500 and 50 neurons each) and dropout layers, for the purpose
of predicting a final classification score based on the predictions given by
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the other classifiers. Dropout is a technique for reducing overfitting, and it
consists of ignoring some neurons during parts of the training. As a result,
not all neurons are trained on all the training data, and the network learns
much more robust features that are more likely to generalize. A dropout
rate of 0.2 was used, and it meant that each input to the dropout layer hat
20% probability of being set to zero during each update.

2.1.5 Ensemble learning

Ensemble learning is the use of multiple learning algorithms to obtain better
results than the use of one algorithm alone. In this thesis, an ensemble was
used at the end, when results of the different classification algorithms were
combined. The main idea is that the different algorithms (“weak learners”)
can be combined in a way that compensate for the weaknesses of one using
the strengths of another; this is sometimes framed as variance and bias.

Both bias and variance can be reduced by the right ensemble. The hypothe-
sis is that the different classifiers don’t perform equally well on all test-cases
or on all classes, and with the use of an ensemble the model will not suffer
by predictable errors from a single source.

Three basic approaches exist: bagging, boosting, stacking.

Bagging decreases the model’s variance by training multiple similar models
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in parallel but independently from each other, then combines the predictions.

Boosting learns similar models sequentially, usually emphasizing instances
misclassified by the previous model. Basically, a new model is created and
trained from the errors of the previous learner.

Stacking is an ensemble model where a new model is trained from the
combined predictions of the previous models.

In this thesis, stacking is used, and a meta-learner (a neural network) is
trained on the predictions of weaker classifiers.

2.2 Features

2.2.1 TF-idf

TF-idf is a way to score terms by their importance in the dataset. It’s a
product of two parts, TF and IDF. TF is the term frequency – how
much is the term used, relatively. For example, in the previous sentence,
‘the’ his used twice, there are 12 words, so 𝑡𝑓(𝑡, 𝑑) = 2/12 = 0.167. IDF is
the inverse document frequency – it’s the measure of how significant is that
term over the entire corpus. It’s given by the number of sentences divided
by the number of sentences containing the term.

In the above paragraph there are 7 ‘the’, 6 sentences and 70 words. IDF is
calculated by the log of total number of sentences divided by the number of
them containing the term – in this case, 5 sentences contain ‘the’. 𝑑𝑓(𝑡, 𝐷) =
𝑙𝑜𝑔(6/5) = 0.18.
The TF-IDF is calculated as 𝑡𝑓𝑖𝑑𝑓 = 𝑡𝑓(𝑡, 𝑑) ∗ 𝑖𝑑𝑓(𝑡, 𝐷), where d is the
sentence and D is the paragraph. The TF-IDF then is 0.167 ∗ 0.18 = 0.03.
The same calculation for “term”, in that same sentence, is 𝑡𝑓𝑖𝑑𝑓 = 𝑡𝑓 ∗𝑖𝑑𝑓 =
2/12 ∗ 𝑙𝑜𝑔(6/4) = 0.04.
The same calculation for “frequency” is 𝑡𝑓𝑖𝑑𝑓 = 𝑡𝑓 ∗𝑖𝑑𝑓 = 1/12∗𝑙𝑜𝑔(6/2) =
0.09.
Even on such a small scale it describes the relative ‘importance’ of these
words in the paragraph quite well. Sometimes different formulas are used
both for TF and IDF, but the idea is the same.

The same holds for n-grams.
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2.2.2 N-grams

Words cannot be directly fed to an algorithm, and language models are used
to transform some input text to numbers. The simplest language model is
Bag of words, which describes the text by counting (and possibly normaliz-
ing, such as TF-IDF) the tokens inside it. While this works for some settings,
such as topic classification, such a representation completely loses the rela-
tive position of words. The relative position can influence the meaning, for
example “alcohol free” vs “free alcohol”.

N-grams are one way to solve this problem. A n-gram is a sequence of items
from a source text in the order they appeared, be they words, characters,
syllables etc. For example, a series of 2-grams would be: ‘N-grams are’, ‘are
one’, ‘one way’, ‘way to’, ‘to solve’, ‘solve this’, ‘this problem’.

TF-IDF N-grams were used in this thesis to represent both POS-tags and
tokens.

2.2.3 Part-of-speech tags

Part-of-speech (POS) tagging is the process of marking up a word as corre-
sponding to a particular part of speech (such as noun, verb, adjective, etc.),
by definition and by context.

Except the usual noun, verb, article, adjective, preposition, pronoun, adverb,
conjunction and interjection, many more categories can be distinguished –
such as singular/plural, case of the word, grammatical gender, tense. While
just by tagging the words themselves without any contextual information
gives an accuracy of 90%, usually a number of more complex techniques are
used, and not all words can be clearly marked as part of a class. (“Refuse”
can be both a verb or a noun, in “The Duchess was entertaining last night”
‘entertaining’ may be a verb or an adjective).[14]

The POS tagging used here was the one implemented in NLTK (Natural lan-
guage toolkit), a suite for NLP for English written in Python. An example
output is:

(‘The’, ‘DT’), (‘Duchess’, ‘NNP’), (‘was’, ‘VBD’), (‘entertaining’,
‘VBG’), (‘last’, ‘JJ’), (‘night’, ‘NN’)

It interprets ‘Duchess’ as a proper noun (like Bob) and ‘entertaining’ as a
verb.
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The following POS tags are used, list and examples from [15]:

• CC coordinating conjunction

• CD cardinal digit

• DT determiner

• EX existential there (like:
“there is” … think of it like
“there exists”)

• FW foreign word

• IN preposition/subordinating
conjunction

• JJ adjective ‘big’

• JJR adjective, comparative
‘bigger’

• JJS adjective, superlative
‘biggest’

• LS list marker 1)

• MD modal could, will

• NN noun, singular ‘desk’

• NNS noun plural ‘desks’

• NNP proper noun, singular
‘Harrison’

• NNPS proper noun, plural
‘Americans’

• PDT predeterminer ‘all the
kids’

• POS possessive ending parent’s

• PRP personal pronoun I, he,
she

• PRP$ possessive pronoun my,
his, hers

• RB adverb very, silently,

• RBR adverb, comparative bet-
ter

• RBS adverb, superlative best

• RP particle give up

• TO to go ‘to’ the store.

• UH interjection errrrrrrrm

• VB verb, base form take

• VBD verb, past tense took

• VBG verb, gerund/present par-
ticiple taking

• VBN verb, past participle
taken

• VBP verb, sing. present, non-
3d take

• VBZ verb, 3rd person sing.
present takes

• WDT wh-determiner which

• WP wh-pronoun who, what

• WP$ possessive wh-pronoun
whose

• WRB wh-abverb where, when

POS tags added during dataset preparation:

• HASHTAG #hashtag
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• URL http://whitehouse.gov
• MENTION @mention

2.3 Evaluation

I needed to evaluate the results of the classifications in some way, to be able
to compare different classificators and datasets to each other and to the
baseline. The task was a multi-class classification on a balanced dataset.

2.3.1 Accuracy, precision, recall, F-score

Accuracy is one of the simplest performance measures, and it’s the overall
effectiveness of a classifier. It is a ratio of the correct predictions to the
total number of predictions. It’s much more useful in the case of balanced
datasets, and I used it as the main metric, since most of the classifications
were on a balanced dataset. A balanced accuracy score is one way to use
accuracy in the case of class imbalance, and in it the contribution of each
sample is weighted according to the inverse prevalence of its true class (see
Fig. 2.2).

Figure 2.2: Accuracy vs balanced accuracy.[16]

Precision for a given class X is the number of items correctly predicted out
of all predicted labels. Intuitively, precision is the ability of the classifier not
to label as positive a sample that is negative[17]. For example, for English, it
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would be the number of correctly predicted UK tweets divided by all tweets
predicted as being UK ones.

Recall for a class X is the number of true predicted members of X divided by
all instances that should have been labeled X.It measures the effectiveness
of a classifier to identify positive labels [18]

For example, a precision of 0.6 and recall of 0.2 for class X means that out
of the times X was predicted, 60% of times it was correct; and out of all the
times X should have been predicted, this happened only 20% of times.

F-score is the weighted harmonic mean of the precision and recall, and it’s
a measure that takes both precision and recall into account.

2.3.2 Confusion matrix

In the case of multi-class classification, a confusion matrix visualizes the
performance of the algorithm. As the name implies, it makes it easy to see
which classes are the hardest for an algorithm, and which classes tend to be
confused.

Fig. 2.3 is an example of a confusion-matrix of a near-perfect classification.
The main diagonal is clearly seen, and it contains the number of correct
predictions. Incorrect predictions are located outside of this diagonal. The
“10” in the last row means that 10 tweets from Mexico were (incorrectly)
classified as being from Brazil. Section 4.2.2 contains an example of worst-
case confusion matrix.

Section 4.3 has more realistic confusion matrices, and confusions (such as
between BR-MX or between UK-IN) are clearly seen. This would not have
been clear from any other typical metrics.

The confusion matrices used in this thesis were drawn using adapted source
code from the scikit-learn documentation[19].
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Figure 2.3: Near-perfect confusion matrix



Chapter 3

Construction of training data

3.1 Dataset

The dataset contains geo-tagged tweets from Twitter. Twitter is a social
network with 126 million active users, on which users interact with each
other with short messages (tweets). Tweets originally were restricted to 140
characters, but in 2017 the limit was doubled to 280 for most languages.
Users can optionally specify a location in their tweets, and when searching
tweets can be filtered by their location. The location can either be specified
as exact coordinates or a Twitter “Place”, which is a polygon, and has
additional semantic information connected to it, like a city name[20][21].

Additionally, Twitter automatically identifies the language of tweets, and
it’s possible to filter tweets by their location (if they are geo-enabled) and
their language at the same time.

3.1.1 Advantages

• Tweets are ephemeral in nature, and Twitter is not the place for bal-
anced in-depth analysis. The “here-and-now” of the content may mean
that it’s less thought-out and less studied, which may influence the way
the language is used. NLI is very often done on essays written in a
foreign language for the purpose of language testing, where an effort
is made to use correct grammar and punctuation. User-generated so-
cial media content may have the advantage of having L1-grammar and

15
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language patterns more clearly visible, since less effort and attention
is dedicated to them.

• As opposed to usual NLI-datasets, which may be contextually limited
(essays are written on certain topics), user-generated content may be
seen as a slice-of-life source of material that is closer to what people
think and experience in real life – very different people in different
experiences and different lives. While it may be argued that Twitter
users are not a representative demographic, it’s not-representative in
a different way from the others (most are essays written either in the
context of tests such as TOEFL or by students; students writing essays
in a foreign language for grades is only one context where a foreign
language is used, Twitter is another one).

3.1.2 Drawbacks

A user-generated dataset like the one used here is not a “clean” dataset.

3.1.2.1 Twitter-specific issues

• For the purposes of this thesis, I assumed that the tweet location is
a good proxy of the first language of the author, which is not always
the case — people writing English tweets while being located in a
certain country does ot mean that they are a native speaker of that
country’s language. This will impact the results of any classification.
One way to overcome this is to use the last N tweets of a user, check
how many of them were written in a certain country, and assume that
it’s their country, and not that they, say, are on vacation. Or to assume
that followers of accounts like @timesofindia are Indians. Or classify
based on Tweets of users who mostly tweet in their L1 (as detected by
Twitter), and use their tweets in English for the dataset.

• Not all tweets are written by real people — Twitter has a big number
of bots and tweets posted automatically. By some estimates, as much
as 24% of tweets are created by bots [22], and 9% to 15% of active users
are bots [23]. Some of them are weather bots, financial aggregation
bots, or novelty bots with text that is not representative of real life
language used by L1 native speakers.

• In line with the point above, tweets can be automatically generated.
For example, some users choose to configure automatic cross-posting
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of their activity in other social networks. This creates tweets that are
very similar to each other (“%@username% just posted a photo on his
Instagram account: %link%”). Twitter used to have an API feature to
show and/or filter posts made from other clients, but this option was
removed as part of a policy aimed at focusing on their official website
and clients (as opposed to third party apps)[24]. This means that such
content has to be found and filtered manually, which was attempted
but was not too effective. In my dataset, which initially contained
341353 Tweets, 5889 (~1.7%) had identical text.

3.1.2.2 Issues stemming from the type of data used

• Tweets (in the general case) can be up to 280 characters long, but
in fact are usually much shorter (half of the tweets were less than 74
characters long). This means that a tweet may not contain enough
information to distinguish the L1 of the author. As mentioned above,
usually NLI is done on much longer texts, such as essays.

• Twitter’s language detection is not perfect, especially with shorter
texts. I did not quantify this, but visually about 5% of the supposedly
English tweets were not in English (Brazilian/Portuguese seemed to
be the language most often misclassified as English by Twitter).

Fig. 3.1 is a random selection of unprocessed tweets from the dataset. Note
the length, how challenging the grammar for POS-tagging is, how not all of
them are in English, and in general how little material there is compared to,
for example, essays or longer posts.

One way to overcome part of these disadvantages would be to get a number
of tweets from the same user, thereby getting a synthetic dataset of longer
texts, or getting longer texts of different users of the same category.

3.1.3 Additional remarks

Usually, NLI done on spoken text transcription is much less precise than
NLI done on essays or written text, some sources report as much as a 10%
difference. There may be various causes for this, one of them may be that
transcribed spoken text contains fewer features such as punctuation, and
that people, when speaking, tend to use much simpler words and grammati-
cal constructions. While equating tweets to spoken text transcription would
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Figure 3.1: Examples of tweets
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be questionable, Tweets are usually written much closer to how people actu-
ally speak. The format is quite informal, and most people would not spend
too much effort on correct grammar and punctuation for a tweet (this more
typical for essays, and it’s essays that make up typical NLI datasets, such
as the TOEFL11 NLI corpus [6]).

Mitigating part of the disadvantages mentioned in this chapter was not at-
tempted, but it would create a much better dataset and should not be hard.
It would be an extremely interesting route for further research, because com-
bining most of the ideas suggested would overcome part of the issues of this
dataset while retaining most advantages.

3.1.4 Collection

The dataset was collected in April and August 2019 in a period of 4-5 days.
It contains Tweets from regions delimited by the bounding boxes (GPS co-
ordinates) in the English language.

3.1.4.1 Tweepy

For communication with the Twitter API, the tweepy (“An easy-to-use
Python library for accessing the Twitter API”)1 package has been used.
The final script used for collecting the tweets from a Twitter Stream was
heavily based on GeoSearch-Tweepy[25], a script which contained examples
of how to filter Twitter Streams by geolocation data.

3.1.4.2 Countries and bounding boxes

The countries used in this thesis are India, Saudi Arabia, Brazil, Mex-
ico, and Great Britain. These countries were chosen because of their
large number of Twitter users (to make data collection easier) and because
they represent languages from different language families.

Brazil and Mexico have different languages that nonetheless belong to the
same language family, and if the assumptions and process are valid, they
should have the highest mutual mis-classification.

1https://www.tweepy.org/
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The bounding box for Great Britain also contains Ireland, since they are
close linguistically (and fit neatly into one bounding box). In India a lot
of languages are spoken, but most belong to two unrelated language fami-
lies: Indo-European->Indo-Iranian and Dravidian, 78% and 20% of speakers
respectively.

Country Bounding box Language Language family
India (67.46, 5.43,

90.71, 27.21)
122 major
languages

78% Indo-European;
19.64% Dravidian;
some English

Saudi Arabia (34.77, 12.86,
49.84, 30.19),
(48.1, 13.93,
60.25, 24.77)

Arabic Afro-Asiatic →
Semitic

Brazil (-58.55, -30.11,
-35.26, 2.5),
(-67.3, -13.03,
-34.38, 1.53)

Portuguese Indo-European →
Italic

Mexico (-112.59, 17.98,
-85.38, 27.75)

Spanish (de
facto)

Indo-European →
Italic

Great Britain (-10.68, 50.15,
1.41, 59.69)

English Indo-European →
Germanic

3.1.4.3 First collection results

341353 Tweets were collected in April and August 2019.

3.1.5 Cleanup and dataset preparation

To simplify further analyses, I started with a cleaned-up version of the
dataset. The tweets were changed or removed, as described below, and
some initial features were added. All of this was done using pandas, a data
analysis framework/library for Python.
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Figure 3.2: Bounding boxes used. Background image © Daniel Strebe, 15
August 2011, CC BY-SA 3.0. Japan was later removed from classification.
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3.1.5.1 Original dataset

The csv file with the dataset had the rows “userid, username, location, date-
time, lat, long, lang, text”, containing the author’s Twitter user ID, @user-
name, location as provided by the user themselves, the date and time of
the tweet in UTC, latitude, longitude, language of the tweet as detected by
Twitter, and the text of the tweet.

3.1.5.2 Removing duplicates, short and possibly automatically
generated tweets

First, tweets containing the exact same value in “text” were removed. There
were 5889 (~1.7%) such tweets.

Tweets containing substrings indicative of automatic posting (“Just posted”,
“has just posted”, “Want to work at”, “I’m at”) were also removed (also
about 6%).

A number of tweets did not fit neatly inside bounding boxes. There may be
various explanations for this, and they (77619, or ~22%) were also removed
from the dataset.

Then, Tweets shorter than 40 characters (inside the clean column, so with-
out counting mentions, see below) were deleted (78439 of the remaining
194351 ones, so ~40%).2 The figures below show how the length of the
tweets changed by country after this. The mode for char_count in this fi-
nal dataset ranged from 42 for Brazil, Saudi Arabia and UK to 46 characters
in India.

2This would make classifying real tweets shorter than 40 characters complicated, but I
believe they would have been complicated to classify regardless.
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This left a dataset of 104001 tweets, or just 30% of the initial number.

3.1.5.3 Location and native language (L1)

Then, based on the latitude and longitude data, each tweet was labeled
with one of the L1 categories. This was done by checking in which bounding
box the tweet’s GPS coordinates were located. The results can be seen on
Fig. 3.2.

3.1.5.4 Balancing the dataset

The dataset at the beginning was unbalanced - as one can see on Fig. 3.3, the
languages (=target classes) were not represented uniformly. Two versions
of the dataset were created, a balanced and an unbalanced one, to observe
their effects on classification.

The unbalanced dataset contained 104001 tweets, the balanced one 49876.

Figure 3.3: Language distribution of final unbalanced dataset

After basic testing, it was concluded that the balanced dataset would be a
better choice, and all further tests and classifications were based on it.
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3.2 Feature engineering

3.2.1 Removing superfluous mentions

In Twitter, it’s possible to “mention” another user by prefixing their user-
name with an “@” (@example). This is also done automatically when a user
is replying to a tweet or otherwise taking part in a conversation with multi-
ple users, in this case mentions are added to the beginning of the tweet (the
user is free to override this though). The number of mentions does not count
towards a tweet’s limit of 280 characters (longest tweet in the dataset is 964
characters long). This meant that even though the raw character count was
sometimes much more than 280 characters, the tweet was still useless from
a NLI perspective. If a tweet is even 350 characters long and 300 of those
characters were usernames, there’s little data to work with.

Still, I felt that completely removing mentions was not a solution. Semanti-
cally, they represent something close to proper nouns, and their location in
a tweet/sentence (and their number) might be significant.

It was decided to remove only the ones at the beginning, leaving maximum
two mentions. For example, if a tweet has one or two mentions at the
beginning, nothing changes, otherwise if there are n>2 mentions n-2 get
removed (see Fig. 3.4 for an example).

This meant that superfluous mentions were removed while preserving as
much of the information they give as possible. Leaving two mentions instead
of one allows to preserve the grammatical number of that part of the tweet,
which might be significant.

On this step line breaks were also removed.

Figure 3.4: Results of removing superfluous mentions from the beginning of
tweets.

The original tweets were moved to the column otext, and the ones with
fewer mentions were added in text.
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3.2.2 Masking mentions, hashtags and URIs

A version of the tweets with all the mentions, hashtags and URIs removed
was written to clean, and features like char_count and punctuation were
calculated based on it. This left the question of what to do with mentions,
hashtags and URIs in the actual training data. For further analysis, a col-
umn “masked” was created with the changes described below.

For bag of words and n-grams, the actual content of the mention is either
irrelevant or counterproductive. In the first case, because a mention is the
username of an account, and there are a lot of accounts, this would create
‘words’/tokens that are all different between each other but mean the same
semantically. In the latter case, mentions used as words/tokens might be
counterproductive for the stated purpose of native-language identifica-
tion based on user-generated data. For example, India’s largest English-
language newspaper is Times Of India (@timesofindia), and someone men-
tioning it has a high likelihood of being from India, regardless of the other
linguistic features. So while this would improve the classification results,
they would not generalize as they are largely based on social-network-specific
features as opposed to linguistic ones.

The same may be said about hashtags – #LokSabhaElections2019 (Lok
Sabha is the lower house of India’s Parliament) was trending (a lot of users
were tweeting about it) as I was gathering the dataset, and it would offer
an easy way to “cheat”. On the other hand, sometimes words inside sen-
tences are used as hashtags (for example, in the tweet “what are we waiting
for #MPN #NowUnited #MPN #Uniters” the first hashtag is part of the
sentence itself, th e last three are just hashtags), and completely removing
them is not a solution.

For URIs mostly the same applies – URIs are different, mean mostly the
same thing, and in case when they are significant they are not the features
we want to use for classifying using language.

So all mentions, hashtags and URIs replaced by the words “REPLMEN-
TION”, “REPLHASHTAG”, “REPLURI” in the column “masked”.

3.2.3 Basic features added during cleanup

All of these features were based on the column clean, the one with the
Tweets after removing the all mentions and newlines.
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• char_count - the number of raw characters in the tweet.
• word_count - the number of words in the tweet.
• word_density - the number of characters divided by the number of

words.
• punctuation - number of punctuation characters divided by the num-

ber of words.
• title_words - number of words starting with an uppercase letter di-

vided by number of words.
• upper_case_words - number of words written in all caps divided by

number of words.

3.2.4 Tokenisation

The next step was to break the tweets in tokens. This was done on all
columns and tests were ran, and at the end only the column “masked” was
tokenized.

For this, a custom tokenizer was used. A standard tokenizer, for example
one provided by ntlk, would not have detected the Twitter entities, such
as @mentions or hashtags. A Python regex-based script was used for this,
adapted from Marco Bonzanini’s tokenizer[26].

3.2.5 Punctuation

I used Python’s string.punctuation definition of punctuation,
'!"#$%&\'()*+,-./:;<=>?@[\\]^_\{|}~’‘. For each one, a column
was created, starting with “p” followed by symbol. In the dataset many
more characters were present in this role, especially UTF8 characters, but
they were not added separately.

3.2.6 Function words (a, the) counts

• a – number of occurrences of the word (not the letter) “a” divided by
number of words.

• the – number of occurrences of the word “the” divided by number of
words.
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3.2.7 Parts of speech tagging

POS tagging in social media has its own complexities, well described in the
dissertation of Tobias Horsmann “Robust Part-of-Speech Tagging of Social
Media Text”. [27] In the dissertation, the example on Figure 5 is given. I
tagged parts of speech using nltk, which may be another reason of possible
suboptimal performance, this is another source of noise in the source data.

Figure 3.5: Complexities of POS tagging user-generated data, figure from
the dissertation of Tobias Horsmann on the topic [27].

We have used nltk’s POS tagger, that encodes POS short strings. For each
POS tag found in the entire dataset, a column was created, with the value
of the number of occurrences of that POS in the Tweet.

This left the question of what to do with mentions, hashtags and URIs.
I decided to tag them as their own parts of speech. While they don’t exist in
classical English grammar and tagging them would have been problematic,
they carry important information, and their location and number may also
be significant.

The example tweet below shows the steps from a tweet, to the masked text,
to tokens, to the tagged POS:

• A huge thank you to @ROsterley from @CharityRetail for joining us
today at the #HUKRetailConf held @ChesfordGrangeQ today. Fan-
tastic insights into the #CharityRetail sector @hospiceuk #conference
#hospice

• A huge thank you to REPLMENT from REPLMENT for joining us
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today at the REPLHASH held REPLMENT today. Fantastic insights
into the REPLHASH sector REPLMENT REPLHASH REPLHASH

• [‘A’, ‘huge’, ‘thank’, ‘you’, ‘to’, ‘REPLMENT’, ‘from’, ‘REPLMENT’,
‘for’, ‘joining’, ‘us’, ‘today’, ‘at’, ‘the’, ‘REPLHASH’, ‘held’, ‘REPL-
MENT’, ‘today’, ‘.’, ‘Fantastic’, ‘insights’, ‘into’, ‘the’, ‘REPLHASH’,
‘sector’, ‘REPLMENT’, ‘REPLHASH’, ‘REPLHASH’]

• [‘DT’, ‘JJ’, ‘NN’, ‘PRP’, ‘TO’, ‘MENTION’, ‘IN’, ‘MENTION’, ‘IN’,
‘VBG’, ‘PRP’, ‘NN’, ‘IN’, ‘DT’, ‘HASHTAG’, ‘VBD’, ‘MENTION’,
‘NN’, ‘.’, ‘JJ’, ‘NNS’, ‘IN’, ‘DT’, ‘HASHTAG’, ‘NN’, ‘MENTION’,
‘HASHTAG’, ‘HASHTAG’]

3.3 N-grams

A version of the tweets with all the mentions, hashtags and URIs removed
was written to clean, and features like char_count and punctuation were
not part of the dataset proper, and were calculated after the dataset de-
scribed in this chapter was read from disk.Scikit-learn’s CountVectorizer
was used, with n-gram range of 1 to 4 for both POS n-grams and token
n-grams (after testing, this was the value that performed best using virtually
all classificators). Additionally, removing English stop-words seemed to im-
prove predictions (which was surprising, at the beginning I thought that the
number of stop-words and use patterns of stop-words would be significant),
so this was done too when building n-grams.

3.4 Final feature sets

From here on, I’ll use the following definitions:

• Basic features:
– Counts of various features: char_count word_count word_density

punctuation title_words upper_case_words the a pos_count;
– Counts of each POS tag seen in the dataset in the tweet
– Number of punctuation marks: p! p" p#p$p%p&p’p(p)p*p+p,p-

p.p/p:p;p<p= p> p? p@ p[ p\ p] p^ p_ p``p{p|p}p~‘
• POS n-grams: N-grams created from POS tags
• Token n-grams: N-grams created from tokens based on the column

“masked” (the one not containing hashtags, mentions or URIs.
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Datetime, location, language, latitude, longitude and datetime were never
used. While date and especially time might have been interesting to take into
account, they are too social-network specific, and I wanted to concentrate
on the linguistic features. Social features for NLI and tweets classification
have been used and very well described in [28] and [23].
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Chapter 4

Classification

4.1 Classification goals

There were two main goals:

• classify using POS-tags, punctuation, word count, etc. - everything
not using the actual word content

• classify using features above and word content

The reasoning for this was described in the Introduction: I wanted to see
how successful would be classification if any not purely linguistic features
are avoided.

It could be argued that the issues with hashtags described in Section 3.2.2
apply also to words, albeit a bit less. Since there was an election in India
in the time the dataset was collected, some of the models might confer
additional meaning to the usually neutral word “election” and give biased
predictions to Tweets containing this word. This might be partly fixed by a
much larger dataset gathered over longer periods of time. But the issue of
some topics or words appearing more often in the tweets of certain countries
simply because the concept they represent is more likely to be talked about
in certain countries is much harder to mitigate this way.

This became clear when, at the beginning, during initial testing, I wanted
to see if there are words much more likely to be used by certain L1-speakers.
I first trained a NN on the same dataset using simple Bag of words features.
Then I classified each single word seen in the dataset as if it were a tweet,

31
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then sorted them by how confident the NN was in its classification. Un-
surprisingly, the result was either city (or personal) names or words clearly
belonging to a particular culture (such as ‘lakh’/‘crore’ for big numbers in
the case of India).

4.2 Baselines

First, baseline results were calculated, for both the balanced and unbalanced
dataset.

Baseline results are needed to have a meaningful point of comparison. The
final accuracy of the classifiers alone would not say much, since a 40% on a
binary classification is much worse than a 40% on a multi-class classification.
Lastly, as in the example of anomaly detection, if I have 0.01% anomalies and
create a classifier that always returns “no anomaly” I’d have a 99.9% success
rate and only the 99.9% baseline would show that the result is actually
meaningless.

4.2.1 Baseline for unbalanced dataset

A stratified and a most-frequent dummy classifier was used, both provided by
sklearn.dummy.DummyClassifier. [29] A stratified classifier returns values
with the same distribution as the classes in the source data. It had 28%
accuracy. A most-frequent classifier returns only the most-frequent class,
in this case UK, and it had 44% accuracy.
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4.2.2 Baseline for balanced dataset

For the balanced datasets, all classifiers had ~20% accuracy, that is 100%
divided by the number of the target categories.

We will consider 20% as a good baseline for all future classification on the
balanced dataset.



34 CHAPTER 4. CLASSIFICATION

4.3 Classification on basic features

A number of tests were done on basic features as defined in Section 3.4.

The dataset was shuffled and then divided into a train and test set as usual,
with a split of 0.7/0.3 training/testing, and it resulted into 34912/14963 and
72800/31201 train/test Tweets for balanced/unbalanced respectively. Same
ration was done in the next section for POS and token n-grams. Addition-
ally, the features were scaled to (-1, +1) using the standard settings of the
Standardscaler of sklearn, since SGD is very sensitive to this.

This section has a better and more precise description of the tests taken
to demonstrate the process, in the next section the process and confusion
matrices are only shown for the ones used in the final estimator.

Having calculated the baselines, it’s possible to start classifying the tweets.
Three algorithms were used for this initial classification – a DNN classifier
as implemented in Tensorflow’s Estimators API, a Random forest algorithm
and a SVM algorith, both available in scikit-learn.

4.3.1 Grid-search

A grid-search of optimal parameters was performed, using from
sklearn.model_selection.GridSearchCV, using crossvalidation of
5.

For SVC the following parameters were tested:

{'C': [1, 10,100,1000], 'kernel': ['linear']},
{'C': [1, 10,100,1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']}

For SGD the following was used:

{'penalty': ['none','l1','l2','elasticnet'], 'loss': ['hinge',
'log','modified_huber'],'alpha': [1e-1,1e-2,1e-3,1e-4,1e-5]},

For Random Forest, the parameters were:

{'n_estimators': [1, 10,100,1000], 'criterion': ['gini','entropy'],
'min_samples_split':[2,5,10],'min_samples_leaf':[1,5,10],
'max_features':['auto','sqrt','log2']},

For DNN, no automatic parameter search was performed, but many different
options and architectures were manually tried.
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Unless otherwise specified, the results are usually the ones of the classifier
found to perform best on the data in question.

4.3.2 DNN on unbalanced dataset

I used Tensorflow’s DNNClassifier implemented as part of the Estimators
API. Two hidden layers were used, of 30 and 20. I did not use any cross-
validation or hyperparameter tuning to choose the parameters. The choice
of using two layers was partly motivated by [30] and the rule of thumb “less
than half of the input layer” (89 features in this case), but I tried a lot
of combinations even with hundreds of neurons, and there was a ceiling of
accuracy at 52%.

The result was 52% accuracy.

Figure 4.1: Confusion matrix of DNN classifier running on unbalanced
dataset
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4.3.3 SGD and SVM on unbalanced basic features

4.3.4 Random Forest on unbalanced dataset

Figure 4.2: Confusion matrix of Random Forest classifier with 1000 estima-
tors running on unbalanced dataset

Results are on Fig. 4.2. It’s interesting to note that RF handles class im-
balance better than all the other algorithms in this section; it was also the
fastest.
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4.3.5 Deep Neural Network on balanced dataset

Figure 4.3: DNN on balanced dataset

Accuracy was 0.39, results on Fig. 4.3.

4.3.6 Random forest on balanced dataset

Figure 4.4: Confusion matrix of Random forest on balanced dataset

Accuracy: 46.2%
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rfcl=RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=10, min_samples_split=5,
min_weight_fraction_leaf=0.0, n_estimators=2000,
n_jobs=None, oob_score=False, random_state=None,
verbose=0, warm_start=False)

4.3.7 SGD and SVM on balanced basic dataset

Figure 4.5: Confusion matrix of SVM classifier running on balanced dataset

Optimal SVC had the parameters C=1.0, kernel=‘linear’. The fact that a
low C was chosen by the grid search implies that the dataset is noisy.

The results of SGD seemed to be very unstable and are not included.

4.3.8 Summary of results and effects of unbalanced datasets

Unbalanced datasets give higher (classical) accuracy, but are not helpful for
our purposes. From the confusion matrices it’s clear that class imbalance is
a problem for most of the tried classificators, RF and DNN seemed to be
less affected by the class imbalance. The SGD and SVM were used without
additional settings such as weights, which might have improved their results.

Balanced accuracy was not used here, and accuracy alone should not be seen
as a valid metric, but the confusion matrices make it clear that unbalanced
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datasets are an issue. I decided to train only on the balanced dataset, to
remove at least this source of complexity from an already challenging clas-
sification, and since a test of the possible ways to handle class imbalances
was not part of the goals of this thesis.

4.4 Classification with NLP features

After the results of the previous chapter, I decided to work only on the
balanced datasets. A comparison was done between the classification on
masked text (replacing usernames, mentions and URLs by REPLUSER, RE-
PLMENT, REPLURI), original text, clean text (with all mentions, URIs,
hashtags completely removed) etc, all tokenized. At the end, 1-4 n-grams
on masked text tokens were used. No scaling was done since all n-grams
were represented using TF-IDF, which already returns scaled data.

4.4.1 POS n-grams

Figure 4.6: SGD with log loss on POS n-grams

On this dataset, the best performing classifier was a SGDClassifier with log
loss (a logistic regression model), penalty l2, and alpha of 0.0001, with an
accuracy of 43%. Same classifier with hinge loss (an implementation of an
SVM) performed 2% worse. This is interesting because hinge loss performed
dramatically better in the case of of token n-grams.
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4.4.2 Token/word n-grams

Figure 4.7: SGD with hinge loss on token n-grams

Figure 4.8: SGD with log loss on token n-grams

The best performing classifier was a SGDClassifier with loss=‘hinge’,
penalty=‘l2’ and alpha=0.0001. Log loss performed much worse, but was
retained because it seemed to improve the results of the ensemble. Also
decreasing the alpha seemed to improve the results of the classifier with log
loss, but not hinge loss. At the end, a value of 0.0001 was used for both.

Interesting in these classifications is that there’s much less misclassification
between linguistically similar classes than in the sections above, and that
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India is the easiest class to classify correctly. Possibly, because Hindi English
has more local words in it than the English spoken in other countries, or that
the election meant that a lot of names of cities and politicians were used.
The fact that here the misclassifications in general seem to be relatively
randomly distributed (in the hinge SGD classifier) may be an indicator of
one of the limitations of the dataset: the tweets that can’t be well described
neither by POS n-grams, nor basic features, nor token n-grams might be an
artifact of the way the dataset was collected, and are the people in vacation,
the people being in the country for work, quotes, automatically generated
tweets etc.

4.5 Ensemble learning

To improve on the maximum accuracy of each of the classificators, ensemble
learning was attempted. The fact that most of the classifiers returned not
just the prediction, but also the probability estimates for each of the classes,
allowed to create a meta-classificator. For each, both DNN, SGD, SVM and
RF were tested.

4.5.1 Dataset used for ensemble learning

The class probabilities returned by each classificator were used as features,
for each of the five languages. In the case of SGD with hinge loss, that
returned only the prediction but not the probabilities, a simple one-hot
encoding was used, that doubled as a prediction of 100% probability for the
predicted class and 0% for the other ones.

4.5.2 Ensemble using predictions on basic features and POS
n-grams

Most papers for the purpose of such meta-classificators use SVMs, but I
found a DNN with the following settings to be the most accurate:

tf.keras.layers.Input(probs.shape[1], 32),
tf.keras.layers.Dense(100, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(500, activation='relu'),
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Figure 4.9: DNN Ensemble on basic+POS

tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(50, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(5, activation='softmax')

As input the probabilities returned by the RF classifier (46.7% accuracy) on
basic features and the SGD with log loss on the POS n-grams (42% accuracy)
were used.

This improved by 1.3% the results of best performing RF classifier, increas-
ing the accuracy from 46.7% to 48%.

4.5.3 Ensemble using predictions on all available features

Input classifiers used were:

• RF on basic features - 46.7%
• SGD with log loss on POS n-grams: 42% accuracy
• SGD with log loss on 1-4 token n-grams: 53.7%
• SGD with hinge loss on 1-4 token n-grams: 59.3%

For example, one row would use all the following probabilities:

classifier UK IN SA BR MX
RF: 0.13850509 0.12204897 0.21259514 0.25949008 0.26736071
SGD on POS: 0.168 0.118 0.175 0.254 0.285
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classifier UK IN SA BR MX
SGD log: 0.16851449 0.19365019 0.17553513 0.25271791 0.20958229
SGD hinge: 0 0 0 0 1
Real class: 0 0 0 0 1

Both SGD with log-loss and SGD with hinge loss on the same features
increased the accuracy much more than each of them individually.

I believe that this improvement can be explained by the fact that the RF
used the probabilities as additional information about what the
hinge classifier was not sure about. (A SGDClasifier with hinge loss
returns only the prediction, but not the probability estimates for the other
classes, while one with log loss can return such probabilities, but performs
much worse.)

Additionally, I expected a neural network to be able to use complex rela-
tionships between classifiers better than anything else, but this was not the
case.

Figure 4.10: RF on all available features in ensemble

Final settings for the RF, as found via grid search, were:

RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=10, min_samples_split=5,
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min_weight_fraction_leaf=0.0, n_estimators=2000,
n_jobs=None, oob_score=False, random_state=None,
verbose=0, warm_start=False)



Chapter 5

Summary

5.1 Basic results

In this Bachelor’s thesis, I attempted to detect the native language of the
authors of tweets written in English. I approached this as a classification
problem: first, I collected tweets in English, written from 5 different geo-
graphical areas, then replaced mentions, hashtags and URIs by tags. After
this, using a combination of features like part of speech, punctuation, POS
n-grams and word n-grams trained two classifiers – one Random Forest, and
the other a Support Vector Machine. Lastly, I trained a meta-classifier (a
deep neural network), that used predictions from both and delivered a final
prediction, improving the results by about 1%. Two different feature sets
were used:

• only parts of speech, punctuation and articles, which yielded 48% ac-
curacy over 5 categories (with a 20% trivial baseline accuracy)

• parts of speech, punctuation, articles and word tokens, with 60% ac-
curacy over the same categories.

I separated both because of two possible different goals in such a classi-
fication. The first one is an attempt to classify based on pure language
and grammatical features that are independent from the content and word
choice of the tweet. A 46% accuracy with 5 categories means that people
with different language backgrounds do use different parts of speech, punc-
tuation, articles, and that some degree of information about an author may
be gathered using these features alone. The second goal was to classify
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using all available linguistic features. Mentions, hashtags and URIs were
hidden while keeping a tag in their place, because they might allow a way to
“cheat” during the classification (it doesn’t take machine learning to guess
that someone mentioning @timesofindia is probably located in India). There
are a number of social-network-specific features that would have improved
these results, but this would not have been pure NLI. Lastly, using actual
words improves results by picking other cues. If there’s an election in In-
dia someone speaking about elections is more likely to be from India, even
though this would not have increased the accuracy on a dataset collected
after a month. And someone mentioning Riyadh (the capital of Saudi Ara-
bia) probably speaks Arabic, always. The first goal was an attempt to see
how far would I get by avoiding all such cues completely.

Random Forest has been consistently one of the best working algorithms,
and the fastest. The only exceptions are SVMs for the n-grams, which is
not surprising due to how well they handle sparse data.

Native Language Identification is a complex task even for humans, and usu-
ally it’s done on much bigger texts (at least 100 words per instance, 75% of
the tweets used in this thesis contain less that 25 words) and datasets with
less noise, so a fair comparison to existing results is not possible.

5.2 Discussion

Comparing these results to existing ones is nontrivial because NLI is rarely
attempted on such datasets. The most relevant was “Native Language Iden-
tification with User Generated Content” [7], but it used Reddit data of >100
words and concentrated on SN features such as subreddits. To my knowl-
edge, NLI was never attempted on such a noisy dataset with such short
texts.

Confusion matrices were very enlightening during most stages of classifi-
cation. The misclassifications between MX/BR and UK/IN were expected.
The former because of the same language family, the latter because of British
English being used and taught in India for centuries. This confirms the ini-
tial hypothesis that these categories would be misclassified, and confirms
that using the country where the tweet was written as a proxy of the au-
thor’s native language was sensible, but I believe is still the biggest limitation
of these results. The hypothesis that POS-tags and basic features would be
less accurate than tokens was also confirmed.
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The dataset can be improved in many ways, and additional testing with
the ideas described in Section 3.1 would be interesting (such as the use of
a synthetic dataset to create longer source texts, or using more tweets from
individual accounts).

It would be also interesting to focus on the smileys used, both the smileys
and their location inside the tweet, along with any UTF-8 symbols used.
Both were not analyzed and adequately covered by the used features, but
to me they seemed to be quite different between the categories.

More and more different categories would also be interesting. My choices
were partly dictated by the amount of Twitter users in the countries and
the practicality of rectangular bounding boxes around the countries, since
I was not sure about the viability of my method at all; and some of my
choice regarding algorithms and parameter optimisation were also limited
by computing power and time. Now I believe collecting more tweets for a
longer time and a more thorough look at algorithms and their parameters
is warranted.
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